Facultad de Ciencias en Física y Matemáticas
X
Bienvenido al servicio de conversación en línea de la Facultad de Ciencias en Física y Matemáticas
¿En qué le puedo ayudar?
Le recordamos el horario de atención de lunes a viernes de 9:00 a 15:00.
No | Docentes - PTC | SNI | SEI | Reseña Curricular |
1 | CESAR ÁLVAREZ OCHOA | 1 | VI | Reseña Curricular |
2 | ROBERTO ARCEO REYES | 1 | VI | |
3 | PAVEL CASTRO VILLARREAL | 2 | VI | |
4 | ORLANDO DIAZ HERNANDEZ | 1 | VI | |
5 | GERARDO JESUS ESCALERA SANTOS | 1 | ||
6 | ARIEL FLORES ROSAS | 1 | VI | |
7 | KAREN SALOME CABALLERO MORA | 2 | VI | |
8 | VICTOR IVAN RUIZ PEREZ | 1 | VI | |
9 | RUSSELL AARON QUIÑONES ESTRELLA | 1 | VI | |
10 | FLORENCIO CORONA VAZQUEZ | 1 | VI | |
11 | YOFRE HERNAN GARCIA GOMEZ | 1 | ||
12 | JAVIER SANCHEZ MARTINEZ | 1 | VI |
No. | Docentes - Asignatura | SNII | SEI | Reseña Curricular |
1 | MARCO ANTONIO BEDOLLA HERNÁNDEZ | 1 | VI | Reseña Curricular |
2 | BERENICE POSADA RAMÍREZ | 1 | VI |
No. | Docentes - Honorarios | SNII | SEI | Reseña Curricular |
1 | JOSE MANUEL CRUZ MARTINEZ | 1 | VI | Reseña Curricular |
2 | JORGE GONZALEZ GUTIERREZ | 1 | VI | |
3 | NESTOR ENRIQUE VALADEZ PÉREZ | 1 | VI |
No. | Docentes - Posdoctorantes | SNII | Reseña Curricular |
1 | YOJANA JAUTZI PUPURI CARREON HERRERA | 1 | Reseña Curricular |
2 | RAUL FELIPE SOSA | 1 | Reseña Curricular |
3 | MARIO ALBERTO AGUIRRE LÓPEZ | 1 | Reseña Curricular |
4 | JESÚS DIAZ REYES | Candidato | Reseña Curricular |
La Facultad de Ciencias en Física y Matemáticas tiene tres Cuerpos Académicos
Ciencias naturales y exactas
Cuerpo Académico: |
Grado: |
LGAC: |
Lider: |
Integrantes: |
Fisica |
Consolidado |
Astrofísica |
Dr. Sergio Mendoza Vázquez |
César Álvarez Ochoa |
Matemáticas |
En Formación |
|
Dra. María del Rosario Soler Zapata |
Alfredo Camacho Valle |
Topología y sus aplicaciones | Consolidado | Topología general, teoría de continuos y sus hiperespacios |
Dr. Florencio Corona Vázquez |
Russell Aarón Quiñones Estrella |
Grupos Colegiados:
No. | Nombre |
1. | Sistema Dinámicos y Complejidad |
2. |
Fundamentos de la Física |
Física Teórica
Ésta LGAC consiste en la investigación de diversos problemas teóricos en las áreas de Gravitación, Física de Partículas y Física de la Materia Condensada utilizando varios marcos conceptuales basados en la Teoría de Campos, la Teoría de Cuerdas y la Mecánica Estadística. Los investigadores que siguen esta línea son de carácter interdisciplinario, pues sus investigaciones incluyen desde el estudio de la gravedad en mundos brana, la cosmología de cuerdas y branas, las anomalías en teoría cuántica de campos, así como el papel del espacio-tiempo no-conmutativo fenómenos de materia condensada como el líquido de Fermi, el efecto Hall cuántico, entre otros, hasta la conexión entre la mecánica estadística y la teoría de cuántica de campos, así como el estudio de dinámica browniana y membranas fluidas relevantes para la Biofísica.
A continuación listamos los nombres de los integrantes de esta LGAC:
|
|
La astrofísica de altas energías se relaciona con la detección, análisis y mecanismos físicos de producción y propagación de los rayos gama provenientes de algún lugar fuera de nuestro planeta. Su estudio corresponde en general a procesos de emisión no térmicos, es decir, que no son descritos por la radiación de un cuerpo negro y a las técnicas experimentales para detectarlos desde el espacio y sobre la superficie de la Tierra. En general la producción de rayos gama esta asociada a los fenómenos más violentos que ocurren en el universo como lo es el colapso gravitacional de una estrella gigante o el colapso de dos estrellas de neutrones (Destellos de rayos gamas o GRBs) con la muerte algunas estrellas (Supernovas), con el nacimiento de agujeros negros y púlsares, con el choque de galaxias, con agujeros negros que desde el centro de las galaxias devoran estrellas completas (Núcleos Activos de Galaxias o AGNs). Igualmente se producen en procesos hadrónicos de interacción de rayos cósmicos con los campos del medio en el que se propagan a través de decaimientos de partículas como los piones neutros, etc.
A continuación listamos los nombres de los integrantes de esta LGAC:
|
|
En años recientes la comunidad de física se ha interesado en procesos de diferentes naturaleza tanto biológicos, químicos, dinámica de poblaciones, distribución de la riqueza, la descripción de variaciones de las bolsas de valores, medicina, entre otros. Estos problemas son susceptibles de ser tratados con las herramientas de la Física y la Matemática lo cual ha generado resultados prometedores para poder comprender la dinámica de diferentes sistemas. En este sentido surgen los Sistemas Complejos como campo de investigación multidisciplinaria, en el cual se considera la estructura del sistema y las interacciones entre sus elementos, internos y externos, los cuales dan lugar a diferentes propiedades dinámicas emergentes (multiestabilidad, auto organización, ciclos límites, etc.); que en principio no es posible deducir de las propiedades de los elementos aislados que forman el sistema. En este campo se utilizan el modelado matemático y algoritmos computacionales para aproximar la solución de estos sistemas, dado que en muchos casos no es posible encontrar una solución analítica y es necesario utilizar equipos con una alta capacidad de cómputo.
A continuación listamos los nombres de los integrantes de esta LGAC:
|
|
Fibras Ópticas y Óptica no Lineal
Las fibras ópticas son en la actualidad el medio de transmisión de información más utilizado en sistemas ópticos de comunicaciones, esto debido al gran ancho de banda y baja perdida que presentan dichas fibras ópticas , ademas , que estas pueden ser utilizadas en la regeneración de las señales a transmitir, utilizando para ello efectos no lineales tales como efecto raman, amplificadores de fibra óptica dopada con erbio, En la FCFM, se esta haciendo investigación en esta área de la física, específicamente en óptica no lineal y amplificadores ópticos utilizando distintos tipos de fibra óptica, con ello la Facultad se encuentran a la vanguardia sobre estos temas de investigación.
.
A continuación listamos los nombres de los integrantes de esta LGAC:
|
|
Esta LGAC consiste en la investigación en las áreas de geometría y topología en general, atacando diversos problemas teóricos dentro de la geometría algebraica, la topología general y la topología algebraica. Los investigadores de esta línea combinan el álgebra abstracta para el estudio de los espacios topológicos y, en particular, el álgebra conmutativa en el estudio de las soluciones de los sistemas de ecuaciones algebraicas. Además, utilizan herramientas de topología para el desarrollo de la teoría de continuos, estudiando tanto los mismos así como sus hiperespacios y las relaciones entre ellos. A continuación damos una descripción del quehacer en relación con estas áreas.
Esta área de estudio se encarga del análisis de espacios topológicos que tienen cierta estructura adicional: localmente son parecidos a un espacio real o complejo. Por ejemplo, las Superficies de Riemann, las cuales son "localmente planas"; es decir, parecidas a un espacio real de dimensión 2 (o complejo de dimensión 1).
Pensemos en una esfera (globalmente no es plana, pero si nos imaginamos pequeños parados sobre ella y vemos cerca a nuestro alrededor la vemos plana), en un neumático o dona (llamado toro complejo), o en lo que resulta de pegar 2 neumáticos, o 3, etc. De entre estos espacios, llamados variedades complejas, algunas tienen una representación como solución de sistemas de ecuaciones polinomiales en algún espacio más grande y se llaman variedades abelianas. Las variedades abelianas han sido extensamente estudiadas desde tiempos de Riemann, Abel y Poincaré y actualmente se está revitalizado su estudio pues, se les han encontrado aplicaciones en el campo de la Física y para ello es necesario describirlas como variedades de Prym-Tyurin: variedades que viven dentro de otra y tienen ciertas propiedades buenas en este contexto. Se sabe que toda variedad abeliana (con ciertas condiciones técnicas) es una variedad de Prym-Tyurin, pero interesa una construcción concreta y óptima de este fenómeno, además de ejemplos de lo mismo, todo esto aún no del todo conocidos.
En términos generales, la teoría de continuos y sus hiperespacios se encarga de estudiar las propiedades de los espacios métricos y/o espacios de Hausdorff, compactos y conexos, así como del estudio de modelos de hiperespacios y sus propiedades. Aunque los continuos son, principalmente, objeto de estudio de los topólogos, estos aparecen de manera natural en otras áreas de la Matemática como las ecuaciones diferenciales y en los sistemas dinámicos. También aparecen en otras ciencias como la Física y la Química. Existen muchas preguntas abiertas respecto a la teoría de continuos y sus hiperespacios. Muchas surgen de manera natural estudiando sus caracteristicas tanto por separado como al estudiar un continuo mediante hiperespacio y veceversa. Otras surgen a travéz de los sinstemas dinámicos , donde los continuos juegan un papel importante al estudiar sistemas determinados por funciones caóticas.
La teoría de continuos es una rama clásica de las matemáticas con casi un siglo de tradición. El primer impulso fuerte a su estudio se dio en Polonia a principios de la década 1920-1930. En México se ha desarrollado fuertemente desde la década 1980-1990. Se han escrito dos libros de circulación internacional y más de 200 artículos de investigación por autores mexicanos. Además se han desarrollado más de 50 tesis de estudiantes mexicanos de varios niveles, incluyendo más de 15 de doctorado, principalmente en la Ciudad de México y Puebla. Recientemente en el Estado de Chiapas, concretamente en la Universidad Autónoma de Chiapas, se está formando un grupo de investigadores dedicados al tema, con esto se pretende que, a corto-mediano plazo, Chiapas sea un referente nacional e internacional en esta área.
La Topología algebraica es un rama de la topología la cual se dedica a la búsqueda de invariantes topológicos, haciendo uso de herramientas de álgebra abstracta. Un área de la topología algebraica que sigue siendo interesante, pues tiene muchas preguntas abiertas aún, es la de homotopía. Hasta hoy día no se han podido describir completamente los grupos de homotopía de las esferas. Teoría y herramienta que ha surgido para esto, es por ejemplo los llamados modelos minimales, estos rescatan la homotopía racional.
Espacios homogéneos
Una línea de investigación concreta en este tema consiste en averiguar si los grupos de homotopía de un espacio homogéneo, esto es, un espacio topológico el cual tiene estructura de variedad diferenciable y es difeomorfo a un cociente de grupos de Lie G/K, donde G y K son grupos de Lie compactos, semi-simples y simplemente conexos, son suficientes para clasificar dichos espacios. De esto surge, naturalmente, el preguntarse: ¿Puede hacerse esto de manera eficiente en dimensión baja?
Ciclos algebraicos, geometría algebraica
Los ciclos algebraicos son una versión algebraica de las clases de homología, de la topología algebraica. Se define aquí la equivalencia racional, la homológica y la algebraica. Los cocientes entre los respectivos subgrupos del grupo de Chow son los de interés en el área, pues tienen muchas preguntas abiertas (Conjetura de Bloch-Belinson por ejemplo). Uno de estos cocientes es el llamado grupo de Griffiths, el cual aún sigue siendo un misterio aún para casos simples como el de variedades abelianas complejas. Se tienen únicamente resultados concretos en dimensión baja.
A continuación listamos los nombres de los integrantes de esta LGAC:
|
|
Probabilidad y Ecuaciones Diferenciales
En esta línea de investigación convergen diversas técnicas desarrolladas especialmente en la teoría de ecuaciones diferenciales y la teoría de probabilidades, en particular los procesos estocásticos, para desarrollar investigación en campos que requieren la interacción de estas técnicas, como son la teoría de ecuaciones diferenciales aleatorias, los procesos estocásticos aplicados a la econometría, y la teoría de control estocástico. En la teoría de ecuaciones diferenciales aleatorias, se desarrollan métodos numéricos y analíticos para el estudio de las soluciones de ecuaciones diferenciales que tienen en sus coeficientes, sus condiciones iniciales, condiciones de frontera o términos fuente, procesos estocásticos de segundo orden.
En cuanto a los procesos estocásticos y econometría, la investigación se enfoca en el desarrollo de modelos de riesgos crediticios de portafolio, de factores y reducidos. De igual manera, se trabaja en aplicaciones de procesos no homogéneos semi-Markovianos a tiempo discreto y continuo, en modelos bayesianos de teoría de juegos aplicados a ciencias políticas, economía y finanzas, así como en la modelación y pronósticos de indicadores económicos por cointegración. El estudio de la teoría del control estocástico considera una gran variedad de modelos, que incluyen las cadenas de Markov, procesos de saltos, ecuaciones diferenciales estocásticas (EDEs), EDEs con saltos, usando criterios de optimalidad relacionados con costos promedios y ergódicos.
A continuación listamos los nombres de los integrantes de esta LGAC:
|
|
PUBLICACIONES EN EL ÁREA DE LA FÍSICA