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Introduction: String Theory

Why study string theory?

I It is a theory of quantum gravity.

I It unifies all of the forces of nature in one theory.

I It can explain the cosmological constant.

I Why not?

But is it Physics?

I Hasn’t made a testable prediction.

I Why do we need quantum gravity anyway?



There is some scepticism in certain parts of the physics community:



Introduction: Quantum Gravity
The Einstein-Hilbert action for General Relativity is

SEH =
1

16πGN

∫
d4x
√
−gR (1)

We may write Newtons constant in terms of the Planck mass as

8πGN =
~c
M2

pl

(2)

where Mpl ≈ 2× 1018Gev . If we take perturtbations around flat
space

gµν = ηµν +
1

Mpl
hµν (3)

we obtain schematically

SEH =

∫
d4x(∂h)2 +

1

Mpl
h(∂h)2 +

1

(Mpl)2
h2(∂h)2 + · · · (4)

a standard looking QFT with an infinite series of interaction terms.



Introduction: Quantum Gravity

I The interactions are surpressed by powers of Mpl .

I The quantum perturbation theory expansion is therefore an
expansion in E 2/M2

pl where E is the energy of the process of
interest.

I Unfortunately it is non-renormalizable - it requires an infinite
number of counter terms to make the theory finite as loop
order increases.

I Other approaches - Loop quantum gravity (change the
quatization proceedure), non-commutative geometry (change
the description of space-time).



Introduction: Supergravity

Supergravity:

I Low energy limit of string theory

I Effective theory - many strings calculations done in sugra
limit.

Susy Phenomonology: mSUGRA and generalizations

I SUSY broken in hidden gravitational sector

I minimal amount of SUSY

I few free parameters

but

I Essentially ruled out by a Higgs at 125Gev

I Neutralino dark matter abundance, Susy particle mass bounds.
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String Theory and Phenomonology

Many problems!

I 4D - Strings live in 10D and Membranes in 11D

I Sugra is either asymptotically flat or Anti-de Sitter, but we
live in a de Sitter universe.

I Large number of possible vacua, the “Landscape”.
Predictability?

I Supersymmetry - If it exists in nature it is broken at at
energies currently accessible by colliders.



4D

Compactifications - String phenomonology:

I String theory is considered on a suitable background with 4
non-compact dimensions.

I The compactification manifold is restricted by the amount of
residual supersymmetry in 4D.

I The details on the compactification manifold give the details
of the 4D QFT.

Brane worlds:

I Known physics restricted to 4D manifold in higher
dimensional space time

I extra dimensions may be large

I branes always break at least half of the supersymmetry.

I Difficult to produce supersymmetric brane worlds without
singularities.
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dS

I It is impossible to produce a supersymmetric dS theory of
gravity.

I de Sitter SUGRA proposed a few years ago in which SUSY is
spontaneously broken.

I Compactification origin?

I related to world volume theory for D3 branes.



Landscape

Too many vacua: Related to

I Compactification mechanism - what is it?.

I Strings live in 10D but “grows” a dimension in the strong
coupling limit to become M-theory.

I 1st quantized theory: Change to string field theory and higher
spin theory.

I Duality invariant formulation:

I T-duality invariant doubled theory.

I U duality invariant formulation from E10/11

I Is there some principle or dymanics that select the
compactification manifold away from stringy energies?
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Susy Breaking

I Related to all the others.

I In particular how many supersymmetries are broken
dynamically and how many by the brane/compactification?

I At what energies?

An overly optimistic scenario

I LHC (or beyond) finds low energy superssymmetry and we can
fit the breaking mechanism with confidence.

I A classification of supersymmetric backgrounds tells us the
compactification manifold.

I String theory predicts something we can test - new particles.

Overly pessimistic:

I No low energy supersymmetry

I landscape problem remains

I compactification manifold only resticted by not being
supersymmetric and that the resulting gauge group contains
that of the standard model.
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I Holography to the rescue - Our work wasn’t pointless!

I Learn about strong coupling limit of field theories, susy
provides calculability on both sides of the correspondence to
learn more about it.

I Description of non-perturbative aspects of CFTs in flat space.
Holographic QCD?

I We need that rather than having an infinite number of colors,
and being at infinite coupling some method to move away
from these limits. String theory effects in supergravity provide
an expansion away from these regimes in the inverse coupling
and inverse of the number of colours.

I Doing string theory properly should lead to new methods in
QFT including in CMT.



Some research lines in Strings and related areas
I Non-perturbative description: String field theory, doubled and

exceptional field theory (generalized complex and exceptional
geometry, Kac Moody Algebras)

I Field theory: Conformal fields theories on different geometric
backgrounds, classification, applications to HEP and CMT.
(Algebras, Kac-moody algebras, representation theory,
category theory)

I The landscape and swampland - Quantum consistency of
theories in lower dimensions and their possible vacua. (Novel
methods in QFT, effective field theory)

I String cosmology - Very (very very) early universe, when size
of universe was small. Source for inflation.

I String phenomoenology - Field theory from string theory on
compactification manifolds. (algebraic geometry, topology,
differential geometry, index theory)

I Non-commutative geometry. (C ∗ algebras, algebraic K-theory,
category theory)

I Many others and.......



Susy breaking

I SUSY and its breaking is key to connect string theory with
phenomenology

I A classification of susy backgrounds and branes is necessary if
we are to be able to make such a connection.

I How do we achieve that?

We use tools from the areas in mathematics:

I Group, algebra and representation theory.

I Differential and spin geometry, Clifford algebras.

I Algebraic geometry, topology, index theorems.

I Differential equations,

and we apply them to

I Small black holes.

I The very early universe.

I Field theory in flat space via holography.



Introduction to susy solutions of off-shell sugras

I Supersymmetric solutions of a particular supergravity have to
solve two sets of equations:
I Killing spinor equations: “Supersymmetric”
I Equations of motion of the theory: “Solution”

I Killing spinor identities relate components of equations of
motion to each other for supersymmetric configurations in
supergravity theories

I Tell us which equations of motion are automatically solved by
the supersymmetric geometries

I If the supersymmetry in a theory is realised off-shell then we
don’t even need to know the action, i.e. the specific theory
under consideration.

I Can prove all orders results in effective supergravity
description of string theory.

I Apply equally to any higher derivative supergravity.
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Introduction to susy solutions of off-shell sugras

I Normally horrible to try and supersymmetrize higher derivate
(string correction or not) actions on-shell, as we need to
change the susy transformations and the action.

I Move to off-shell formulation: We will use the superconformal
formalism.
I Superconformal group biggest possible for S-matrix,

supersymmetry is realized off-shell.
I Matter couplings easier to find.
I Contains superpoincare, so the superpoincare theories can

always be obtained by a suitable gauge fixing.
I Supersymmetric completions of most curvature squared terms

are known.



Off-shell Killing spinor identities

I In work of Ortin & Kallosh and Ortin & Bellorin the Killing
spinor identities were derived.

I The derivation does not require that the supersymmetric
action is known, just that the action is supersymmetric under
the given supersymmetry variations of the fields.

I In work of Meessen (2007) the Killing spinor identities were
used in the off-shell N = 2 d = 5 superconformal theory to
show that the maximally supersymmetric vacuua of the two
derivative theory are the vacua of arbitrarily higher derivative
corrected theories, up to a generalization of the very special
geometry condition.

I Here we will be interested in what they have to say about
solutions with less supersymmetry.



Off-shell Killing spinor identities
Lets derive the Killing spinor identities. Let S [φb, φf ] be any
supergravity action, constructed in terms of bosonic fields φb and
fermionic fields φf . Let us further assume S [φb, φf ] is the
spacetime integral of a Lagrangian density:

S [φb, φf ] =

∫
ddx
√
gL[φb, φf ] .

The invariance under supersymmetry transformations of the action
can be written

δQS [φb, φf ] =

∫
ddx
√
g {Lb[φb, φf ]δQφb[φb, φf ]

+Lf [φb, φf ]δQφf [φb, φf ]} = 0 ,

where δQ denotes a local supersymmetry transformation of
arbitrary parameter, subscripts b, f denote functional derivative
with respect to φb, φf respectively, and a sum over fields is
understood.



Off-shell Killing spinor identities
Next consider a second variation of the action functional by
varying δQS [φb, φf ] with respect to fermionic fields only. Since
δQS [φb, φf ] is identically zero for arbitrary φb, φf , we have

δQS [φb, φf + δFφf ] = 0

and we set the fermions to zero after the variation. Hence we get

δF δQS |φf =0 = 0

=

∫
ddx

√
|g | [(δFLb)(δQφb)

+ Lb(δF δQφb) + (δFLf )(δQφf ) + Lf (δF δQφf )

]
φf =0

.

Since δQφb and Lf are odd in fermions we are left with∫
ddx

√
|g | [(Lb(δF δQφb) + (δFLf )(δQφf )]φf =0 = 0 .



Off-shell Killing spinor identities

Calculating (δFLf )φf =0 requires knowledge of the entire
Lagrangian, not only its bosonic truncation. However if we restrict
ourselves to supersymmetry transformations having Killing spinors
as parameters, δK , we have

(δKφf )φf =0 = 0 .

Note that

Lb :=
1√
|g |

δS [φb, φf ]

δφb
=

1√
|g |

δSB [φb]

δφb
+

1√
|g |

δSF [φb, φf ]

δφb
,

where the last term vanishes if φf = 0.



Off-shell Killing spinor identities

We are thus led to define

Eb :=
1√
|g |

δSB [φb]

δφb
,

so that bosonic equations of motion take the form

Eb = 0 .

Thus the Killing spinor identities may be written as∫
ddx

√
|g | Eb(δF δKφb)φf =0 = 0 .



N = 2, d = 5 off-shell KSIs

All we need to derive the Ksis for this off-shell are the variation of
the fields under supersymmetry. After gauge fixing the
superconformal theory to super-Poicare these are

δeaµ = −2i ε̄γaψµ

δvab = −1
8 i ε̄γabχ+ · · ·

δD = −1
3 i ε̄γ

µνχvµν − i ε̄γµ∇µχ+ 4i
3 ε̄

iγµV
µ
ij χ

j + · · ·

δV ij
µ = − i

4 ε̄
(iγµχ

j) + · · ·
δAI

µ = −2i ε̄γµΩI + · · ·
δM I = 2i ε̄ΩI

δY I ij = 2i ε̄(iγa∇aΩj)I − 2i ε̄(iγaV
j)

a kΩkI − 2i
3 V

k(i
a ε̄kγaΩj)

− i
3 ε̄

(iγabv
abΩj)I − i

4 ε̄
(iχj)M I .



N = 2, d = 5 off-shell KSIs

I We ignored term involving the gravitino in the variations,
apart from in the veilbein variation.

I This is becasue we shall choose to solve the Einstein equation
last. - It is usually the most involved in any case.

I In particular, if we assume that when we look to solve the
Eintein equation that all other eoms have been solved first, we
can ignore the ... terms above.

So if we set
E(e)µa := 1√

|g |
δS
δeaµ

we get

E(e)µaγ
aεi
∣∣∣
other bosons on-shell

= 0 .



N = 2, d = 5 off-shell KSIs

To proceed we will need one more ingredient, the gravitino
variation which reads

δψi
µ =

[
∇µ +

1

2
vabγµab −

1

3
vabγµγab

]
εi−V i

µ jε
j+ 1

3γµγ
aV i

a jε
j = 0 .

Let us now write the KSI associated to a variation of gauginos. We
set

E(A)µI :=
1√
|g |

δS

δAI
µ

E(M)I :=
1√
|g |

δS

δM I
,

E(Y )I ij :=
1√
|g |

δS

δY I ij
,



N = 2, d = 5 off-shell KSIs

We obtain

0 =

∫
ddx

√
|g |
[
E(A)µI

(
−2i ε̄iγµ

)
+ E(M)I (2i ε̄i) + E(Y )I jk(2i ε̄j)γaV ki

a

+2i
3 E(Y )iI jV

kj
a ε̄kγa + E(Y ) i

I j ( i
3 ε̄

jγabvab)
]
δΩI

i

+ E(Y )iI j(−2i ε̄jγa)∇aδΩI
i .

Integrating by parts and using the fact that the gravitino Killing
spinor equation implies

γa∇aε
i = 1

6(v · γ)εi − 2
3V

ai
j γaε

j

we obtain

E(A)µI γµε
i − E(M)I ε

i − E(Y )I jkγ
aV ki

a ε
j

−E(Y )ikI γaV
a
jkε

j −
(
∇aE(Y ) i

I j

)
γaε

j = 0 .



N = 2, d = 5 off-shell KSIs
Finally we consider the KSI associated with the auxiliary fermion.
We define

E(v)ab :=
1√
|g |

δS

δvab
E(D) :=

1√
|g |

δS

δD
E(V )µij :=

1√
|g |

δS

V ij
µ

,

and thus obtain

0 =

∫
d5x

√
|g |
[
− i

8E(v)ab ε̄iγab + iE(D)ε̄jγaV
ai
j − i

3E(D)vab ε̄iγab

−E(D)4i3 ε̄
jV i

ajγ
a − i

4E(V )µijε̄
jγµ + i

4E(Y )iI jε̄
jM I
]
δχi

+ [−i ε̄E(D)γµ]∇µδχ .

Integrating the last term by parts, discarding the total derivative
and making use of the gravitino Killing spinor equation we obtain[

1
8E(v)ab + 1

2E(D)vab
]
γabε

i +∇aE(D)γaε
i

+1
4E(V )aijγaε

j + 1
4E(Y ) i

I jM
I εj − 2E(D)V ai

jγaε
j = 0 .



Spinorial Geometry and classifying supersymmetric
configurations

I Supersymmetric configurations solve the Killing spinor
equations, i.e. the vanishing of the supersymmetry variations
of the fermions on purely bosnic backgrounds.

I Demanding the vanishing of the gravitino variation for a
bosonic background implies

δψi
µ =

[
∇µ +

1

2
vabγµab −

1

3
vabγµγab

]
εi = 0 .

I From the vanishing of the gaugino variation for a bosonic
background one has

δΩIi =

[
−1

4
F I
abγ

ab − 1

2
γµ∂µM

I − 1

3
M I vabγab

]
εi = 0 .

I the vanishing of the auxilary fermion variation for a bosonic
background we get

δχi =

[
D − 2γcγab∇avbc − 2γaεabcdev

bcvde +
4

3
(v · γ)2

]
εi = 0 .



Spinorial Geometry and classifying supersymmetric
configurations

I In order to solve these equations, in the past the bilineaers
methods were used. Form a bilinear out of spinors, then
demand that the equations above hold - restricts the form of
the spin connection and matter fields.

I Awkward to solve explicitly for the spinors ε, extensive use of
Fierz identities.

I Gillard Gran & Papadopoulos introduced the spinorial
geometry techniques:
I Use Clifford isomorphim to write the space of spinors in terms

of an exterior algebra and the action of the gamma matrices as
combination of wedge and exterior products on this space.

I Choose a particular basis of gamma matrices so they act as
creation or anihilation matrices - wedge or interior product.

I Use the Spin(1,4) gauge freedom in the above equations to
write representatives for the spinors - up to local lorentz
transformations on the bosonic fields



Spinorial Geometry and classifying supersymmetric
configurations

I Now we have explicit representatives for the spinors. Can solve
the equations “easily”, and more importantly systematically.

I If we leave in all the auxiliary fields the result will be true to
all orders generically - but some may not occur due to the
imposition of the equations of motion. Eoms imply less
general geometry. Supersymmetric configurations are more
general than supersymmetric solutions to a given theory
(generically).

I Lets see an example.



Weyl squared corrected N = 2, D = 5 supergravity
coupled to Abelian vector multiplets

As discussed by Castro et al
Lagrangian:

L = L2 + L4 .

where at two derivative level we have

L2 = LV + LH = 1
2D(N − 1)− 1

4R(N + 3) + v2(3N + 1)

+ 2NI v
abF I

ab + +NIJ

(
1
4F

I
abF

Iab − 1
2∇aM

I∇aMJ
)

0 + 1
24cIJKe

−1εabcdeAI
aF

J
bcF

K
de .



Weyl squared corrected N = 2, D = 5 supergravity
coupled to Abelian vector multiplets

As far as the four derivative Lagrangian is concerned we will take

L4 = c2I
24

{
1
16e
−1εabcdeAI

aCbcfgC
fg

de + 1
8M

IC abcdCabcd+

+ 1
12M

ID2 + 1
6Dv

abF I
ab + 1

3M
ICabcdv

abv cd + 1
2CabcdF

Iabv cd+

+ 8
3M

I vab∇b∇cv
ac − 16

9 M
I vabvbcR

c
a − 2

9M
I v2R+

+ 4
3M

I∇avbc∇avbc + 4
3M

I∇avbc∇bv ca+

− 2
3M

I e−1εabcdevabvcd∇f vef + 2
3e
−1εabcdeF I

abvcf∇f vde+

+ εabcdeF I
abvcf∇dv

f
e − 4

3F
I
abv

acvcdv
db − 1

3F
I
abv

abvcdv
cd+

+4M I vabv
bcvcdv

da −M I vabv
abvcdv

cd
}
,



EOMs

1√
|g |

δS2
δD

= 1
2 (N − 1) , 1√

|g |

δS2
δvµν

= 2(NIF
Iµν + (3N + 1)vµν),

1√
|g |

δS2
δM I

= (12D −
1
4R + 3v2)NI + cIJK (14F

J · FK + 1
2∇M

J · ∇MK )

+NIJ(2F J
abv

ab +∇2MJ)

1√
|g |

δS2
δAI

µ

= cIJK (18ε
µabcdF J

abF
K
cd + F Jµa∇aM

K ) + 4NI∇av
µa

+NIJ(4vµa∇aM
J +∇aF

Jµa)



EOMs

1√
|g |

δS2
δgµν

= −1
4(N + 3)Eµν − 1

4D(N − 1)gµν

+2(1 + 3N )(vaµv
a
ν − 1

4v
2gµν)

+NIJ(12F
I
aµF

Ja
ν + 4F I

a(µv
a
ν) −

1
2∇µM

I∇νM
J)

−NIJ(18F
I · F J + F I · v − 1

4∇M
I · ∇MJ)gµν

+1
4(∇µ∇νN −∇2Ngµν) .



EOMs

1√
|g |

δS4
δD

= c2I
144

{
DM I + v · F I

}
1√
|g |

δS4
δM I

= c2I
24

{
1
8C

abcdCabcd + 1
12D

2 + 1
3Cabcdv

abv cd

+8
3vab∇

b∇cv
ac − 16

9 v
abvbcR

c
a − 2

9v
2R

+ 4
3(∇avbc)(∇avbc) + 4

3(∇avbc)(∇bv ca)

− 2
3e
−1εabcdevabvcd∇f vef +4vabv

bcvcdv
da − (v2)2

}



EOMs

1√
|g |

δS4
δvµν

= c2I
24

{
1
6DF

Iµν + 2
3M

ICµν
abv

ab + 1
2C

µν
abF

Iab

+8
3M

I∇[µ|∇av
|ν]a − 8

3∇
[µ|∇aM

I v |ν]a

+ 32
9 M

I v [µaR
ν]a − 4

9M
IRvµν

− 8
3∇aM

I∇avµν − 8
3∇aM

I∇[µvν]a

− 4
3M

I εµνabcvab∇dvcd + 2
3ε

abcd [µ∇ν]M I vabvcd

+ 2
3ε

abcd [µF I
ab∇ν]vcd − 2

3ε
abcµν∇dF I

abvcd

+ εabcd [µF I
ab∇cvd

ν] + εabcd [µ∇cF
I
abvd

ν]

+ 8
3F

I [µ
av

ν]
bv

ab − 4
3F

I
abv

aµvνb − 1
3v

2F Iµν

−2
3

(
F I · V

)
vµν − 16M I vabv

aµvνb − 4M I v2vµν
}



EOMs

1√
|g |

δS4
δAI

µ

= c2I
24

{
1
16ε

µabcdCabef C
ef

cd − 1
3∇aDv

aµ

−∇aC
aµ
bcv

bc + 4
3ε

µabcd∇avbe∇evcd

+2εµabcd∇avbe∇cv
e

d + 8
3∇av

abvbcv
cµ + 2

3∇av
aµv2

}



EOMs

1√
|g |

δS4
δgµν

=
c2I
24

{
− 1

8

[
εabcd(µ|∇eF

I
abR

e
cd |ν)

]
+ 1

4

[
M I
(
−Cabc(µ|R

abc
|ν) + 4

3RabC
a b

µ ν + 2C bcd
µ Cνbcd

−1
4gµνC

abcdCabcd

)
+ 2∇a∇bM

IC a b
µ ν

]
− 1

24

[
gµνM

ID2
]

+ 1
3

[
Dv(µ

aF I
ν)a −

1
4gµνDv

abF I
ab

]
+ 1

3

[
M I
((

Rabc(µ − 4Cabc(µ

)
vabvν)

c + 4
3Rabvµ

avν
b − 1

3Rvµ
avνa

+1
6Rµνv

abvab − 1
2gµνCabcdv

abv cd
)

+ 2∇a∇bvµ
avν

bM I + 4
3∇a∇(µvν)bv

abM I

−2
3∇

2vµ
avνaM

I + 2
3gµν∇a∇bv

acvc
bM I

+ 1
6

(
gµν∇2 −∇µ∇ν

)
vabvabM

I
]



EOMs

+
[
1
2Rabc(µvν)

cF Iab +∇a∇bv(µ
aF I

ν)

b
+ 1

3∇a∇(µ|v|ν)bF
Iab

+1
3∇a∇(µF

Ib
ν)vb

a + 1
3∇

2F Ia
(µvν)a

− 1
3gµν∇a∇bv

a
cF

Ibc + 2
3RabF

Ia
(µv

b
ν)

+ 1
12

(
Rµν −∇µ∇ν + gµν∇2

)
vabF

Iab

+ 1
6RF

Ia
(µvν)a −

(
F Ia

(µv
bc + va(µF

Ibc
)
C|ν)abc

−1
4gµνF

Iabv cdCabcd

]
+ 8

3

[
M I
(
va(µ∇ν)∇bv

ab + vab∇b∇(µv
a
ν) + v(µ|

a∇a∇bv|ν)
b

−1
2gµνvab∇

b∇cv
ac
)

+∇av(µ|
a∇bM

I v|ν)
b

−∇(µvν)a∇bM
I vab + 1

2gµν∇av
a
b∇cM

I vbc −∇aM
I vab∇(µvν)b

]
− 16

9

[
M I
(
vaµvν

bRab − 2vabva(µRν)b − 1
2gµνv

abvb
cRac

)



EOMs

+1
2∇

2M I v(µ|
ava|ν)

+ 1
2gµν∇a∇bM

I vacvc
b −∇a∇(µ|M

I vabvb|ν)

]
− 2

9

[
M I
(

2vµ
avνaR + vabv

abRµν − 1
2gµνRvabv

ab
)

−
(
∇µ∇ν − gµν∇2

)
M I vabv

ab
]

+ 4
3

[
M I
(

(∇µvab)(∇νv
ab) + 2(∇avbµ)(∇avbν)− 1

2gµν(∇avbc)(∇avbc)
)

+ 2∇aM
I (∇av(µ|

b)vb|ν) + 2∇aM
I (∇(µ|v

ab)vb|ν)

−2∇aM
I (∇(µ|vb|ν)))vab

]
+ 4

3

[
M I
(

2(∇(µ|v
ab)(∇avb|ν)) + (∇avb(µ|)(∇bv|ν)

a)

−1
2gµν(∇avbc)(∇bv ca)

)
+∇a

(
M I vb(µ∇ν)v

ba + M I vb(µ∇avbν) −M I vba∇(µ|vb|ν)

)]



EOMs

− 2
3

[
M I εabcdevabvcd∇(µ|ve|ν) − εabcde∇(µ|M

I vabvcdve|ν)

− εabcd (µ|∇eM
I vabvcdv|ν)

e + 1
2gµνε

abcde∇fM I vabvcdvef

]
+ 2

3

[
εabcdeF I

abvc(µ∇ν)vde − 2εabcd (µ|∇eF
I
abvc

evd |ν)

]
+
[
εabcdeF I

abvc(µ|∇dve|ν) + εabcd (µ|∇eF
I
abvc

evd |ν)

]
− 4

3

[
2F I

a(µvν)
bvbcv

ac − 2F I
abv

a
(µvν)cv

bc − 1
2gµνF

I
abv

acvcdv
db
]

− 1
3

[
2F I

a(µv
a
ν)vbcv

bc + 2F Iabvabvcµv
c
ν − 1

2gµνF
Iabvabv

cdvcd

]
+
[
16M I vabv

b
(µvν)cv

ca − 2gµνM
I vabv

bcvcdv
da
]

+
[
4M I vabv

abvcµvν
c + 1

2gµνM
I vabv

abvcdv
cd
]}



Conditions for timelike supersymmetry

I For a timelike orbit we can take ε = (ε1, ε2) = (eφ1,−ieφe12)

The Killing spinor equations imply

I U(1) fibration of Hyper-Kahler base space

I ds2 = e4φ(dt + Ω)2 − e−2φĝmndx
mdxn

I F I = e−2φe0∧d(M I e2φ)−M IG (−) +F I (+) = −d(M I e0) + ΘI

I Θ harmonic.

I vµν completely determined.

I D = 3
2e

4φĜ (−)·Ĝ (−)+1
2e

4φĜ (+)·Ĝ (+)+3e2φ∇̂2φ−18e2φ(∇̂φ)2



EOMs and KSIs
Normally to solve the eoms we plug this data into the equations
then try and simplify. However for our representative we obtain for
the Killing spinor identities

E(A)0I − E(M)I = 0 , E(A)iI = 0 ,(
1
4E(v) + E(D)v

)α
α

+∇0E(D) = 0 ,(
1
4E(v) + E(D)v

)0i −∇iE(D) = 0 ,(
1
4E(v) + E(D)v

)12
= 0 , E(e)µa = 0 .

Note that as the KSI are a consequence of the off-shell
supersymmetry, these are valid for all higher order corrections that
can be added to the theory with the same field content, i.e. for
any consistent truncation in which the SU(2) triplet fields are set
to zero. In particular for any such corrected action, including the
one under consideration, it is sufficient to impose the equations of
motion

E(D) = 0 , E(v)(+)ij = 0 , E(M)I = 0 .



Simplified eoms

The equation of motion for D is

0 = 1
2(N − 1) + c2I

48 e
2φ
[
1
4e

2φM I
(
1
3 Ĝ

(+) · Ĝ (+) + Ĝ (−) · Ĝ (−)
)

+ 1
12e

2φĜ (+) · Θ̂(+)I + M I ∇̂2φ+ ∇̂φ · ∇̂M I − 4M I ∇̂φ · ∇̂φ
]
,

The M I equation is more involved, but we find

0 = e4φ
[
1
4cIJK Θ̂(+)J · Θ̂(+)K − ∇̂2

(
e−2φNI

)]
+

+ c2I
24 e

4φ
{
∇̂2
(

3∇̂φ · ∇̂φ− 1
12e

2φĜ 2
(+) −

1
4e

2φĜ 2
(−)

)
+ 1

8 R̂ijkl R̂
ijkl
}
,

This computation has been checked in Mathematica using the
package xAct , and the two equations above are in agreement with
[Castro et al].



Simplified eoms

Finally, after a very long calculation and making extensive use of
duality identities we find the equation of motion for v yeilds

0 = −4e2φĜ
(+)
ij + 2e2φNI Θ̂

I (+)
ij

+ c2I
24

{
1
2e

6φ
(
1
3 Ĝ

2
(+) + Ĝ 2

(−)

)
Θ̂

(+)I
ij

− 1
3e

4φ
(
M I Ĝ

(+)
kl + 2Θ̂

I (+)
kl

)
R̂ kl
ij

+e4φ∇̂2
[
M I (G

(−)
ij − 1

3G
(+)
ij )

]
− 1

6e
−2φ∇̂2[e6φΘ̂

I (+)
ij ]

− 4e4φ∇̂[i∇̂k [M IG
(−)k

j]]
}
,



I Supersymmetric solutions of supergravities have their uses!

I We have the methods to finish the classifications in the two
derivate cases and to all orders in some cases.

I Higher derivative corrections in supergravities allow us to do
calculations which include stringy effects.

I String (very very early universe) cosmology, black hole physics
and supersymmetry phenomonology are the most promising
directions in order to try to test and develop string theory.

I If you are interested in studying these topics for a thesis write
to me at psloane@mctp.mx



Thanks for your attention.
psloane@mctp.mx
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