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We explore some properties of a scalar field configuration as some kind of condensed matter
system, in order to confront, in principle, relevant predictions of the model with some
cosmological data. In particular, we show that a scalar field configuration in a Schwarzschild-de
Sitter spacetime can be interpreted as a trapped Bose-Einstein condensate. The geometry of
the curved spacetime background provides in a natural way an effective trapping potential for
the scalar field configuration, this fact allows us to explore some thermodynamical properties of
the system by means of the Thomas-Fermi approximation, commonly used to describe the
behavior of Bose-Einstein condensates. The curvature of the spacetime also induces a position
dependent self-interaction parameter, that can be interpreted as a gravitational Feshbach
resonance effect that could affect the stability of the cloud.
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Scalar Fields

Scalar Fields

Scalar fields appear in the formulation of many phenomena in gravitational theories.
A scalar field is always present in a large number hypothesis, for instance, in all
higher-dimensional unified field theories; they appear as dilatons in string theory and as
inflatons or dark matter in cosmology 1. Nevertheless, they have remained until now as exotic
matter. It was only in the last year that the Higgs boson was detected 2, a very important fact
in the development of the scalar field theory.
For instance in cosmology: Inflaton, dilaton, quintessence, phantom, Galileon... etc...
On the other hand, it was found that there exist fundamental relations between particle physics,
cosmology and condensed matter 3

1C.H. Brans, Gravity and the tenacious scalar field, gr-qc/9705069
2R. Brout, F. Englert and C. Truffin, Chiral symmetry and linear trajectories, Phys. Lett. B 29 (1969) 590.

P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132.
H. Abreu on behalf of the ATLAS collaboration, ATLAS Higgs searches, PoS(QFTHEP 2013)001.

3W. G. Unruh. Phys. Rev. Lett. 46 (1981) 1351. W.G. Unruh and R. Schuetzhold, eds. ÒQuantum analogues
analogues: From phase transitions to black holes and cosmology”. Lecture Notes in Physics 718 (Springer. Berlin,
Heidelberg 2007). I. Bredberg, C. Keeler, V. Lysov and A. Strominger, ”From Navier-Stokes to Einstein”. ArXiv:
1101.2451 [het-th]. C. Barcelo, S. Liberati and M. Visser, Analogue Gravity, Living Rev. Relativity, 14, (2011), 3.
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Scalar Fields

“Fundamental or effective” ... 4

Scalar fields:

They appear as “fundamentals“ in:

–Scalar-tensor gravity theory
–“Unified theories”... SUSY, SUGRA, superstring...

Or as “Effective“ fields in:

–Higher-dimensional theories.
–Kaluza-Klein models.
–Higher-derivative theories.
... etc...

4Take it from Kei-ichi Maeda talk, Marcel Grossmann Meeting 2015.
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Scalar Fields

Scalar Fields as Boson Fields 5

–Associated with Boson particles.
–Not Fulfill the Pauli’s principle
–Thus, they can be put it together, in
principle, in the same quantum energy
level.

5H.E. Haber and H.A. Weldon, Phys. Rev. Lett. 46, 1497 (1981). H.E. Haber and H.A. Weldon, Phys. Rev. D 25,
502 (1982). E. Castellanos and T. Matos, Int. J. Mod. Phys. B27 (2013) 11. T. Matos and E. Castellanos, Phase
transition from the symmetry breaking of charged Klein-Gordon fields in AIP Conf. Proc. 1577 (2014) 181.

Eĺıas CastellanosMCTP/UNACH

Scalar Field Configurations in a curved space time; The Bose-Einstein Condensation point of view.



Introduction Klein–Gordon Fields in a Gravitational Background Scalar field as a Bose-Einstein condensate in a Schwarzschild-de Sitter spacetime. Conclusions and Perspectives Bibliography

Scalar Fields as Bose-Einstein Condensates

–Klein-Gordon equation =⇒ Relativistic Bose-Einstein Condensate?
There is a lot of “works” suggesting that Scalar fields can be interpreted as BEC’s. 6 However,
this topic is not fully understood.

Also, scalar fields can be viewed as a serious candidate to describe dark matter... 7.

–Scalar fields =⇒ BEC’s ???
–Scalar fields =⇒ DM ???
– DM =⇒ BEC’s ???

6L. Dolan and R. Jackiw, Phys. Rev. D9 (1974) 3320. S. Weinberg, Phys. Rev. D9 (1974) 3357. H.E. Haber and
H.A. Weldon, Phys. Rev. Lett. 46, 1497 (1981). H.E. Haber and H.A. Weldon, Phys. Rev. D 25, 502 (1982). S. Singh
and P.N. Pandita, Phys. Rev. A 28, 1752 (1983). S. Singh and R.K. Pathria, Phys. Rev. A 30, 442 (1984); Phys. Rev.
A 30, 3198 (1984).E. Castellanos and T. Matos, Int. J. Mod. Phys. B27 (2013) 11. ... etc...

7T. Matos et. al. L. Arturo Urena, Bose–Einstein condensation of relativistic Scalar Field Dark Matter, JCAP 0901
014 (2009). L. Arturo Urena, Nonrelativistic approach for cosmological scalar field dark matter, Phys. Rev. D 90
(2014) ... etc...
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What is Bose-Einstein Condensation?

What is Bose-Einstein Condensation?
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What is Bose-Einstein Condensation?

Bose–Einstein Condensation
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What is Bose-Einstein Condensation?

The Nobel Prize in Physics 2001.

Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman

Eĺıas CastellanosMCTP/UNACH

Scalar Field Configurations in a curved space time; The Bose-Einstein Condensation point of view.



Introduction Klein–Gordon Fields in a Gravitational Background Scalar field as a Bose-Einstein condensate in a Schwarzschild-de Sitter spacetime. Conclusions and Perspectives Bibliography

What is Bose-Einstein Condensation?

False-color images display the velocity distribution of the cloud of rubidium atoms at (a) just before the appearance of the Bose-Einstein condensate, (b) just after the

appearance of the condensate and (c) after further evaporation left a sample of nearly pure condensate. The field of view of each frame is 200 x 270 micrometers, and

corresponds to the distance the atoms have moved in about 1/20 of a second. The color corresponds to the number of atoms at each velocity, with red being the

fewest and white being the most. Areas appearing white and light blue indicate lower velocities.
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What is Bose-Einstein Condensation?

Semiclassical Approximation

ε(~r , ~p) =
p2

2m
+ U(~r). (1)

In the semiclassical approximation, the single–particle phase–space distribution may be written
as

n(~r , ~p) =
1

eβ(ε(~r,~p)−µ) − 1
, (2)

The number of particles in the 3–dimensional space obeys the normalization condition,

N =
1

(2π~)3

∫
d3~r d3~p n(~r , ~p) (3)

Condensation temperature

Tc =
h2

2πmκ

(
N

V ζ(3/2)

)2/3

, Box . (4)

Tc = ~ω
( N

ζ(3)

)1/3

, U(r) =
1

2
mω2r 2. (5)
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What is Bose-Einstein Condensation?

Consider an n–dimensional Bose gas whose single–particle energy spectrum is given by ε ∼ ps

where s is some positive number 8

The condensed fraction and the pressure are given respectively by

N0

N
= 1−

( T

Tc

)n/s

, P =
s

n

( U

Vn

)
(6)

non-relativistic gas in 3 dim ε ∼ p2

N0

N
= 1−

( T

Tc

)3/2

(7)

Ultrarelativistic gas in 3 dim and ε ∼ p

N0

N
= 1−

( T

Tc

)3

(8)

8R. K. Pathria, Statistical Mechanics (Butterworth–Heinemann, Oxford, 1996).
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What is Bose-Einstein Condensation?

Generic Potentials

U(~r) =
d∑

i=1

Ai

∣∣∣∣∣ ri

ai

∣∣∣∣∣
si

,

d∑
i=1

ni = 3. (9)

is the so–called generic 3–dimensional power–law potential.
If d = 3, n1 = n2 = n3 = 1, then the potential becomes in the Cartesian trap. If d = 2, n1 = 2
and n2 = 1, then we obtain the cylindrical trap. If d = 1, n1 = 3, then we have the spherical
trap. If si →∞, we have a free gas in a box, etc.
The associated condensation temperature is given by 9

T0 =

[
NΠd

l=1A
nl
sl

l a−nl
l

CΠd
l=1Γ

(
nl
sl

+ 1
)(2π~2

m

)3/2
]1/γ

1

κ
, γ =

3

2
+

d∑
l=1

nl

sl
. (10)

9V. Bagnato, D.E. Pritchard, D. Kleppner, Bose-Einstein condensation in an external potential, Phys. Rev. A 35
(1987); A. Jaouadi, M. Telmini, and E. Charron, Bose–Einstein Condensation with a Finite number of Particles in a
Power Law Trap, Physical Review A 83 (2), 023616; E. Castellanos and C. Laemmerzahl, Modified bosonic gas trapped
in a generic 3-dim power law potential. Phys. Lett. B 731 (2014) p. 1-6.
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What is Bose-Einstein Condensation?

Finite Size Corrections and Weakly Interacting Bose–Einstein Condensate 10 11

εp =
p2

2m
+ U(~r) + 2U0n(~r), U0 =

4π~2

m
a, U(~r) =

1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

z z
2). (11)

Condensation temperature (finite size corrections)
The correction to T0 originates in the zero–point motion, which increases the energy of the
lowest single–particle state (µ = ε0 = 3~ωm/2)

Tc − T0

T0
≈ −0,73

ωm

ω̄
N−1/3 (12)

Weakly interacting systems (µ = 2n(r = 0)U0)

Tc − T0

T0
≈ −1,33

a

ā
N1/6 (13)

where ā =
√

~/mω̄, ω̄ = (ωxωyωz )1/3, ωm = (ωx + ωy + ωz )/3 and a is the s–wave scattering
length.

10C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2004).
11F. Dalfovo, S. Giordini, L. Pitaevskii, S. Strangari, Reviews of Modern Physics, Vol. 71 (1999) 463-512; E. Castellanos and C.

Laemmerzahl, Modified bosonic gas trapped in a generic 3-dim power law potential. Phys. Lett. B 731 (2014) 1-6.
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What is Bose-Einstein Condensation?

The Gross–Pitaevskii equation

The many body Hamiltonian describing N interacting bosons confined by an external potential
U(r) is given, in second quantization by:

Ĥ =

∫
dr

[
− Ψ̂†(r, t)

~2

2m
∇2Ψ̂(r, t) + U(r)Ψ̂†(r, t)Ψ̂(r, t) +

U0

2
Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t)

]
(14)

where U0 = 4π~2a/m is the effective interaction potential, and U(r) is the external potential.

i~ ∂
∂t

Ψ̂† = [Ψ̂†, Ĥ], (15)

together with
Ψ̂(r) =< Ψ̂(r, t) > +δΨ̂(r, t) = Ψ(r, t) + δΨ̂(r, t). (16)

Thus

− ~2

2m
∇2Ψ(r, t) + U(r, t)Ψ(r, t) + U0|Ψ(r, t)|2Ψ(r, t) = i~∂tΨ(r, t). (17)
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What is Bose-Einstein Condensation?

For stationary solutions of the form Ψ = exp(−iµt/~)Ψ(r) we obtain:

− ~2

2m
∇2Ψ(r) + U(r)Ψ(r) + U0|Ψ(r)|2Ψ(r) = µΨ(r), n = |Ψ|2. (18)

The balance between the kinetic term and the interaction energy allows to fix a typical distance
over which the system can heal

ξ =
~√

8πna
. (19)

Where the long wavelength excitations are phonons with a speed of sound given by

v 2
s =

nU0

m
(20)

Thus the sound velocity can be expressed in terms of the healing length ξ as follows

vs =
~√
2nξ

(21)
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What is Bose-Einstein Condensation?

The Thomas–Fermi Approximation12

Neglecting the kinetic term in eq. (18) from the very beginning leads to

− ~2

2m
∇2Ψ(r) + U(r)Ψ(r) + U0|Ψ(r)|2Ψ(r) = µΨ(r), n(r) = |Ψ|2 =

µ− U(r)

U0
. (22)

while ψ = 0 outside of this region. This last assertion, allows us to define the boundary of the
cloud, given by

U(r) = µ, U(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

z z
2). (23)

R2
i =

2µ

mω2
i

, i = x , y , z . (24)

N0 =

∫
|Ψ|2dr → N =

8π

15

( 2µ

mω̄2

)3/2 µ

U0
. (25)

where ω̄ = (ωxωyωz )1/3. Finally, defining the quantity R̄ = (R1R2R3)1/3, together with (24) and
(25), leads us to a measure of the spatial extent of the cloud,

R̄ = 151/5
(Na

ā

)1/5

ā, ā =
√

~/mω̄ (26)

12C.J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, 2002).
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Bose-Einstein Condensates as Test Tools in Gravitational Physics

BECs as Test Tools in Gravitational Physics

1) To test quantum spacetime metric fluctuations 13.
2) Gravitomagnetic effects 14.
3) In Polymer quantum mechanics 15.
4) To model Dark Matter (Schrödinger–Poisson systems, Scalar field dark matter, etc.).
5) Analogue Gravity 16

6) Signals from a possible Quantum structure of space-time 17.
13J. I. Rivas, A. Camacho, and E. Göklu, Class. Quantum Grav. 29 (2012).
14A. Camacho, E. Castellanos, Modern Physics Letters A, Volume 27, (2012).
15E. Castellanos, G. Chacon-Acosta, Phys. Lett. B, Vol. 722, (2013).
16C. Barcelo, S. Liberati and M. Visser, Analogue Gravity, Living Rev. Relativity, 14, (2011), 3.
17E. Castellanos, and J. I. Rivas, Planck–Scale Traces from Interference Pattern of two Bose–Einstein Condensates,

Physical Review D 91, 084019 (2015); Eĺıas Castellanos and Celia Escamilla–Rivera, Modified uncertainty principle
from the free expansion of a Bose–Einstein Condensate, (2015) arXiv:1507.00331.
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Bose-Einstein Condensates as Test Tools in Gravitational Physics

Bremen University, Germany
ZARM (Center of Applied Space Technology and Micro–Gravity)
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

Klein–Gordon Fields in a Gravitational Background

Gross–Pitaevskii Like–Equation and Thomas–Fermi Approximation 18

18Eĺıas Castellanos, Celia Escamilla-Rivera, Alfredo Maćıas and Daŕıo Nuñez, Scalar field as a Bose–Einstein
condensate? JCAP 11 (2014) 034; Eĺıas Castellanos, Celia Escamilla-Rivera, Claus Lämmerzahl and Alfredo Maćıas,
Scalar field as a Bose-Einstein condensate in a Schwarzschild-de Sitter spacetime, (2015) arXiv:1512.03118.
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

KG Fields in Curved Space–Time: GP Like–Equation and Thomas–Fermi Approximation
Let us consider a spherically–symmetric–static background spacetime:

ds2 = −F (r) c2 d t2 +
dr 2

F (r)
+ r 2 dΩ2, (27)

with dΩ2 = dθ2 + sin2 θ dϕ2, stands for the solid angle, and c is the speed of light in vacuum.
F (r) is a metric coefficient. This spacetime is a solution to the vacuum Einstein’s equations
including cosmological constant:

Rµ ν −
1

2
gµ ν R + Λ gµ ν = 0 . (28)

We study the dynamics of a scalar test field, Φ, with scalar self–interacting potential

VΦ =
σ2

2
Φ∗ Φ +

λ

4
[Φ∗ Φ]2, (29)

that is, the scalar field satisfies the Klein–Gordon equation in the curved spherically symmetric
spacetime background given by Eq. (27) which reads:[

gµ ν ∇µ∇ν −
(
σ2 + λ ρn

) ]
Φ = 0; ρn = Φ∗ Φ. (30)
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

Considering the mono-polar component of the scalar field, and a harmonic time dependence:

Φ = e i ω t u(r)

r
, (31)

the Klein–Gordon equation takes the form of a non linear Schrödinger–like equation, that is a
kind of GPE–like: (

− d2

d r∗2
+ Veff + λF ρn

)
u =

ω2

c2
u, ξ =

1√
λFρn

, (32)

where the particle density then takes the form: ρn = u2/r∗2; we have defined the r∗ coordinate:

r∗ =

∫
d r

F
, (33)

and the effective potential reads:

Veff = F

(
σ2 +

F ′

r

)
, (34)

where prime stands for derivative with respect to r∗. In order that the scalar field had stationary
(or quasi stationary) solutions, it can be confined by the curvature of the spacetime itself.
Indeed, it is not necessary to introduce by hand an external potential to confine the scalar field
in the Klein–Gordon equation; the gravitational background confines the field, for some
spacetimes.
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

Schwarzschild–de Sitter spacetime
We consider the case of a black hole within a Schwarzschild–de Sitter spacetime, for which the
metric coefficient function in Eq. (27) has the form:

F = 1− 2M G

c2 r
− Λ

3
r 2, (35)

with M the mass of the black hole and Λ a constant, usually identified with the cosmological
one. We first choose a mass-scale, M0, and a distance-scale, R0, with which we construct the
dimensionless quantity q = G M0

c2 R0
, and the black hole mass under study is a factor of the

mass-scale, M = nM0, and the distance is a multiple of the distance-scale r = x R0, with n, x
dimensionless constants. As long as the cosmological constant has units of curvature, that is,

inverse of area, we construct the dimensionless quantity ν = Λ R0
2

3
, so that the metric coefficient

given in Eq. (35) is given by:

F = 1− 2 q
n

x
− ν x2. (36)

Now, the effective potential, Eq. (34), takes the following form for this spacetime

VeffSdS =
1

R0
2

(
α2 − 2 ν +

2 q n

x3

)(
1− 2 q n

x
− ν x2

)
, (37)
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

Thus, we expect to have regions where their could be bound states of the scalar distribution.

Figura : Effective potential in the Klein–Gordon equation in the Schwarzschild–de Sitter background, for
a large black hole mass, and scalar mass parameter, µ. Here it is seen how the effective potential forms
trapped regions depending on the values of the scalar mass parameter, and the cosmological ones. In
the figure we are taking q = n = 1, for ν the value corresponding to the cosmological constant, and we
are varying the value of the scalar mass parameter, µ = 0,27, where there are no bounded regions, forms
for µ = 0,24, 0,19, 0,16, and disappears for µ = 0,1. In the second graph we show the corresponding
behavior for large radii, 103 ≤ x , in which the effective potential decreases until it reach the cosmological
horizon at xext = 5386,37, where it is equal to zero for any value of the scalar mass parameter.
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

Thomas–Fermi Approximation and Scalar Field Equation in Curved Backgrounds

Following the remarkable analogy between the quasi-stationary scalar field distributions in
curved spacetimes background and the Bose-Einstein condensates described by the
Gross–Pitaevskii equation, we can explore how the procedures used to study, and actually
observe in the laboratory, the condensates, are applied in the scalar field distributions in curved
spacetimes.
Thus, let us boldly apply the Thomas–Fermi approximation to the scalar field equation in
curved backgrounds. In the field equation for such case, Eq. (32), we neglect the kinetic term
with respect to the potential one, and obtain.

(
Veff + λF ρn

)
u =

ω2

c2
u, (38)

Thus, within the Thomas–Fermi approximation, one transforms a differential equation into an
algebraic one, which leads to the following formal solution:

ρn =
ω2

c2 − Veff

λF
. (39)
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

The density in the Schwarzschild–de Sitter takes the form: 19

ρnSch−deSitt =

ω2

c2 − 1
R0

2

(
µ2 − 2 ν + 2

x3

) (
1− 2 q n

x
− ν x2

)
λ
(
1− 2 q n

x
− ν x2

) , (40)

and the size of the distribution in the Schwarzschild–de Sitter spacetime, is the solution of the
equation:

ω2

c2
=

1

R0
2

(
µ2 − 2 ν +

2

x3

) (
1− 2 q n

x
− ν x2

)
, (41)

Clearly, when ν = 0, we recover the Schwarzschild case, and by further taking n = 0, we
recover the flat case.
In analogy, the number of particles within the confinement region can be interpreted as follows

N0 =

∫ xf

xi

ρnSch−deSittdx (42)

where xi and xf are the boundaries of the system, corresponding to the solutions of equation
(41).

19Eĺıas Castellanos, Celia Escamilla-Rivera, Claus Lämmerzahl and Alfredo Maćıas, Scalar field as a Bose-Einstein
condensate in a Schwarzschild-de Sitter spacetime, In progress.
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Effective Gross–Pitaevskii Equation and Thomas–Fermi Approximation

Figura : Density distribution (blue line) on the effective potential in a Schwarzschild–de Sitter
background, we have maintain the value for ν corresponding to the cosmological constant and taken
q = n = 1, µ = 0,17, ω = 0,158, λ = 0,01.
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The Thomas-Fermi Approximation Implies:

(
− d2

d r 2
+ Veff + λF ρn

)
u =

ω2

c2
u, (43)

(
VeffSdS + λeffSdS ρn

)
u = µeff u , (44)

where λeff = λF and µeff = ω2

c2 .

The formal solution is then given by:

ρn =

ω2

c2 − 1
R0

2

(
α2 − 2 ν + 2 q n

x3

) (
1− 2 q n

x
− ν x2

)
λ[1− 2 q

(
n
x

)
− ν x2]

. (45)

And the normalization condition:

N0 =

∫ xf

xi

ρnSch−deSittdx (46)
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The effective potential with our new definitions in Schwarzschild-DeSitter case (37) is given by

VeffSdS =
1

R0
2

[
σ2 − 2ν +

2qn

(r/R0)3

] [
1− 2qn

(r/R0)
− ν(r/R0)2

]
. (47)
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Figura : : Effective potential Eq.(37) for the case with σ1 = 0,19. Bottom: Effective potential Eq.(37)
for the case with σ2 = 0,24.

(Remember that r = x R0.)
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The Thomas-Fermi approximation is valid for systems at temperatures T << Tc and when the
system is weakly interacting for sufficient large clouds.
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Figura : Left: Effective potential (red dashed line) Eq. (37) and density solution (blue solid line)
Eq. (45) for the case σ1 = 0,19. Right: Effective potential (red dashed line) Eq. (37) and density
solution (blue solid line) Eq. (45) for the case σ1 = 0,24. Notice that the Thomas–Fermi approximation
shows that the maximum of the density is located at the minimum of the effective potential for both
values of the mass parameter. This indicate that the Thomas–Fermi approximation leads to well defined
values of the effective potentials and corresponding densities.
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The size (boundary) of the cloud can be calculated from the following expression

ω2

c2
=

1

R0
2

(
α2 − 2 ν +

2 q n

x3

)(
1− 2 q n

x
− ν x2

)
, (48)

which fixes the size of the system within this approximation.
First, let us compute the roots for r using (48). The corresponding roots with physical
meaning are given by:

r1 = 2,24, r2 = 1,21× 109. (49)

In the above results we used the following numerical values: σ1 = 0,19, σ2 = 0,24,R0 = 1, n =
1, q = 1, ν = 3,84× 10−19, ω = 10, c = 1, λ = 0,01, κ = 1, ~ = 1.
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Additionally, the number of particles within the cloud, i.e., within the condensate, is given by
the normalization condition

N0 =

∫ r2

r1

ρnr
2dr , (50)

where

ρn =

w2
0

c2 −

(
− 2nqR0

r
− νr2

R2
0

+1

)(
−2ν+

2nqR3
0

r3 +σ2
)

R2
0

λ
(
− 2nqR0

r
− νr2

R2
0

+ 1
) . (51)

The roots r1 = 2,24 and r2 = 1,21× 109 will set the integration limits of the normalization
condition (50). The numerical integration of Eq.(50) gives as a result N0 = 1,24× 1026 particles
for σ1 case and N0 = 1,06× 1027 particles for σ2 case.
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Finally, notice that λeffSdS = λ(− 2nqR0
r
− νr2

R2
0

+ 1) is negative for λ > 0 and tends to −∞ when

r <

√
− 3

2Λ
+
√

( 3
2Λ

)2 + 6 GM
Λc2 , because the dependence 2M G/c2 r , see Fig. 5 top. In other

words, large changes in λeffSdS can be produced by small changes in the coordinates.

0.000 0.001 0.002 0.003 0.004

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

r

Λeff

0.000 0.001 0.002 0.003 0.004

-0.99999

-0.99998

-0.99997

-0.99996

-0.99995

-0.99994

r

Λeff

Figura : Left: Effective self-interaction parameter λeffSdS
for the case with σ1 = 0,19. Right: λeffSdS

for
the case with σ2 = 0,24.
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In this scenario we are able to define a critical number of particles related to the stability of the
system in the lines of Ref.20 as follows

Ncr = k
RSdS

|λeffSdS |
, (52)
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Figura : Left: Critical number of particle parameter (52) for an stable scenario. Right: Critical number
of particle parameter (52) for an unstable scenario.

20Elizabeth A. Donley, et. al. Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 412, 295-299,
(2001).
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k is a positive dimensionless constant, and is called the ”stability coefficient”. The precise value
of k would depends on the properties of the trapping potential, as in usual condensates 21.
Moreover, RSdS is basically of order 109 as was inferred from (49). If N0 obtained from Eq. (50),
which we assume as the number of particles in the condensed state, i.e., 1026 − 1027, is smaller
than Ncr , then the system is stable, for some values of the constant k. Otherwise is unstable.
These properties can be used to explore the stability of the cloud. In other words, this analysis
suggest that when N0 > Ncr then particles are lost from the system within this approximation,
see Fig. 6. We can notice from Fig. 6 that the system is stable for small values of the constant k
which implies that Ncr ∼ 1011 particles. Conversely, for large values of k the system is unstable,
since Ncr ∼ 1031. Finally, bounds for the constant k must be constrained, in principle, by using
astrophysical data, in order to analyze the stability of the system and consequently to extract
information about the possibility for these systems to forming stable structures.

21Elizabeth A. Donley, et. al. Dynamics of collapsing and exploding Bose-Einstein condensates, Nature 412, 295-299,
(2001).
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Semiclassical approximation and condensation temperature

Semiclassical approximation and condensation temperature

First, notice that if we assume that the energy is conserved, then this implies that the
semiclassical single particle energy spectrum associated with our effective Gross-Pitaevskii
equation seems to be

ε =
p2

2mφ
+ VeffSdS + λeffSdSρT , (53)

where VeffSdS is given by (47) and λeffSdS = λ(− 2nqR0
r
− νr2

R2
0

+ 1)

Additionally, ρT is the corresponding density of particles above the condensation temperature.
Notice that we consider ultra-light scalar field with mass about mφ c

2 ≡ 10−23 eV, and for
~σ/c = mφ, we obtain that the corresponding parameter σ for such ultra-light scalar mass is
5,06 10−18 m−1. Here we have also assumed that the bosonic gas inside the effective potential
VeffSdS is non relativistic.
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Semiclassical approximation and condensation temperature

The condensation or transition temperature is defined as the highest temperature at which the
macroscopic occupation of the ground state appears. In the semiclassical approximation, the
single-particle phase-space distribution for bosons may be written as

f (ε) =
1

eβ(ε−µeff ) − 1
, (54)

where β = 1/κT , κ is the Boltzmann constant, T is the temperature, and µeff is the effective
chemical potential defined above. Clearly, ε depicts the single particle energy spectrum.
Consequently, the total number of particles obeys the normalization condition:

N = N0 +
1

(2π~)3

∫
d3r d3p f (ε), (55)

where N0 is the number of particles in the ground state.
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Semiclassical approximation and condensation temperature

Using the normalization condition (55), we obtain in the non-interacting case

N = N0 +
8π2(2mκT )3/2

(2π~)3

∞∑
l=1

[
exp (βµeff )l

l3/2

∫
r 2 dr exp (−VeffSdS/κT )l

]
. (56)

Assuming also that the system lies in the thermodynamic limit, we can safely set µeff = 0 and
N0 = 0 in order to extract the condensation temperature from the above expression. Thus we
obtain

N =
8π2(2mκTc )3/2

(2π)3

∞∑
l=1

[
1

l3/2

∫ rf

ri

r 2 dr e−(VeffSdS
/κTc )l

]
, (57)

where Tc is the condensation temperature in the non interacting case. The above quation must
be solved numerically.
Also, we have inserted the roots of Eq.(49), i.e., ri = 2,24 and rf = 1,21× 109. Let us set the
minimal value for the number of particles N using the result of the numerical integration of
Eq. (50) which is N0 = 1,24× 1026 particles for σ1 case and N0 = 1,06× 1027 particles for σ2

case. Now, with this minimal value of N0 we are capable to infer the condensation temperature
for both σ cases obtaining as a result Tc ≈ 5× 10−4, where we have used the numerical values
mentioned above.
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Semiclassical approximation and condensation temperature

After this estimation, we proceed to compute the numerical solution of Eq.(57), i.e., the
functional relation between the condensation temperature and the number of particles, which is
given by the following plots
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Figura : Numerical solution for (57). There is not significant differences between σ−cases. The plots
show the evolution of N at small (Left) and large (Right) critical temperatures.

Notice that the condensation temperature is an increasing function of the number of particles.
In other worlds, large number of particles implies higher condensation temperature. Conversely,
small number of particles implies lower temperatures.
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Conclusions and Perspectives

–Condensation temperature in the interacting case.
–Stability of the system.

–Scalar fields =⇒ BEC’s ???
–Scalar fields =⇒ DM ???
– DM =⇒ BEC’s ???
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